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A variational formula for the momentum density is derived by using the 
Hel lmann-Feynman theorem and by introducing a reference system whose 
Hamiltonian differs only in the kinetic energy part from that of the original 
system. As simple applications of the present results, the reduced mass 
correction and the relativistic correction for the hydrogen-like atom are 
discussed. 
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1. Introduction 

In a previous paper [1], we have derived rigorous relations between the energy 
and the electron density in momentum space based on the integrated Heltmann- 
Feynman theorem where the electron mass m is taken to be a parameter. Succeed- 
ingly [2], these results have been generalized to the case where the kinetic and 
potential energy operators depend on a parameter A through arbitrary functions 
g(A) and h(A), respectively. 

In the present paper, we study a variational formula for the momentum density 
following the idea of Nakatsuji and Parr [3] (see also footnote 4 of Ref. [4]). 
Namely, we derive a variational relation (variational integrated Hellmann- 
Feynman formula) for the momentum density on the basis of the energy- 
momentum density relations given in previous papers [1, 2]. For this purpose, 
we introduce a reference system (referred to as/3 system) whose potential energy 
operator is same as but the kinetic energy operator is different from those of the 
original system (referred to as c~ system), respectively. In this variational formula, 
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a parameter which is included in the kinetic energy operator and the momentum 
density of the /3 system plays a role of variational parameter. As a result, the 
formula has a restriction in practical applications, as the formula for the position 
density has [3], that we need to know the correct momentum density for the/3 
system in advance. Therefore, the first application for the reduced mass effect 
(Sect. 3.1) is an example of  simple verification of variational formula and it will 
not have much advantage from practical viewpoint. However, the problem of an 
approximate relativistic correction shown in Sect. 3.2 may illustrate that the 
present method constitutes one of possible methods to estimate the relativistic 
correction from the usual non-relativistic results. Atomic units are used in this 
paper. 

2. Variational formula 

We consider a nondegenerate ground state of an N-electron system within the 
Born-Oppenheimer approximation. We assume that the electronic Hamiltonian 
is written as 

H ( a )  = T(a)  + V, (la) 

including a parameter a. T(a)  is the electronic kinetic energy operator and V 
the (a-independent)  potential energy operator. This original system is called a 
system. We now introduce a reference (/3) system having the electronic Hamil- 
tonian 

H'(f l)  = T'(fl) + V, (lb) 

where /3 is another parameter. Namely, the /3 system has the same potential 
energy operator as the a system but has a different kinetic energy operator. If 
the correct energies and wave functions for the a and 13 systems are denoted by 
E(a) ,  ~ ( a )  and E'(fl),  ~'(/3), respectively, we obtain 

(*(a)l H(a)l~(a))-< (~'(/3)I H(a)]~'(/3)) 
= (,t,'(/3)1H'(/3) + T ( a ) -  T'(/3)1'~'(/3)), (2a) 

from the Ritz variational principle. That is, 

e(a)-< s  ;/3) 
= E'(/3) + (q"(fl)l r ( a )  - r'(/3)lqt'(/3)). (2b) 

If we use the momentum representation and substitute 

N N 

T ( a ) :  Y. t(p,; ce ) ,  T'(/3)= Y~ t'(pi; fl), (3) 
i= l  i = l  

into Eq. (2b), then Eq. (2b) can be rewritten as 

E(a)<-  k(a ; /3 )  

= E'(/3) + f [t(v; a) - t ' (v; /3)]P'(V; /3)  dr, (2c) 
3 
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where p'(p; fi) denotes the (three-dimensional) momentum density for the /3 
system. We can regard Eq. (2c) as a momentum representation [5] of the 
Hohenherg-Kohn theorem [6]. 

Since E'(/3) can be expressed as [1, 2] 

E'(/3)= E'(/30)+ f {f~o[~t'(p;/3')/a/3']p'(p;/3')d/3'} dp, (4) 

in terms of the momentum density, we finally obtain 

E(a)  ~ -- /~(~ ; 13) 

;{f/ = E'(/3o) + [or(e;/3')/o/3']Y(e;/3') d/3' 
n 

+It (p ;  a ) -  t'(p;/3)]p'(p;/3)1 dp. (5a) 

Although there remains the freedom for the choice of/3o, it is convenient to 
choose t3o so as to E'(/3o) = 0 [1, 2]. Eq. (5a) constitutes a variational relation for 
the a system based on the momentum density p'(p; 13) of the 13 system, and f3 
plays a role of the variational parameter. Namely, from the condition of 
aE(e~ ;/3)/0/3 = 0, the best energy and momentum density are derived for the c~ 
system. When we use the result [1] from the integral Hellmann-Feynman theorem 
[7,8], instead of Eq. (4), we obtain a different formula (variational integral 
Hellmann-Feynman formula) 

E(a)  < - / ~ ( a ;  fl) 

= E'(fio) +~ {[t'(p; 13)- t'(p;/3o)][T'(p;/30, fl)/S'(flo,/3)] 

+It(p; ~ ) -  t'(p;/3)]p'(p;/3)} dp, (6) 

where r '  and S' are respectively the transition momentum density and transition 
overlap for the/3 system. However Eq. (6) is more complicated than Eq. (5a) in 
that the former requires both of p' and ~-'. We therefore proceed with our following 
discussion using Eq. (5a). 

The calculation of/~(c~ ;/3) based on Eq. (5a) needs the kinetic energy operators 
t and t' and the momentum density p' be specified. Since the kinetic energy 
operator is usually a function of p = IPl, Eq. (5a) can be simplified as follows, 

e(~)_< ~(~ ; 13) 

= E'(flo) + [c)t'(p ; fl')/Ofl']l'(p;/3') dfl' 
0 

+[t(p;  a ) - t ' (p ; /3 ) ] I ' (p ' , / 3 ) [  dp, (5b) 

where I ' (  p; fi ) -= p2 jo2~ {jo p'( p ;/3 ) sin Op dOp} d~be is the radial momentum density 
for the/3 system. When the relations between the radial momentum density I(p) 
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and the isotropic Compton profile J(q) (see e.g. [9]), 

J(q) =(1/2) p-~I(P) dp, I(p) = -2p[dJ(p)/dp],  (7) 
q[ 

are employed, Eq. (5b) is rewritten by using J(q). In addition, we can also derive 
a variational formula in terms of the directional Compton profiles Jx(Px), Jy(Py), 
and Jz(Pz) [2], if the kinetic energy operator is an additive sum of the directional 
components. 

Eq. (5) is an exact variational relation for the a system and it applies not only 
to the electronic problem but also to the nuclear problem, though a priori 
knowledge about the fl system is required. Since the a and fl systems differ only 
in their kinetic energy operators, to solve the 13 system may be a problem of the 
same level as to solve the a system directly. Quite the same has been pointed 
out in position space [3]. In this sense, the applicability of the present results is 
limited. 

3. Illustration 

3.1. Reduced mass correction 

For the hydrogen-like atom, let us consider the problem of taking into account 
the effect of the nuclear mass M using the reduced mass/z[= m M / ( m  + M) with 
m being the electron mass] (a system). The fl system is the system of M = 00. 
This problem is an example that the known results are correctly reproduced from 
the variational formula derived in the previous section, because H(/z)= H'(/z) 
and p(/z) = p'(/z). 

The momentum wave function for the state specified by the quantum numbers 
(n, l, ml) of the hydrogen-like atom with the nuclear charge Z is given in Refs. 
[10-13]. Then, the radial momentum density of the fl system containing the 
electron mass m as a parameter is given by 

I'm(p, m) = p2[ Fnt(p ; m)] 2, (8a) 

Fnl(p ; m) = (mZ)-3/2{(2/~r)[(n - l - l)!/(n + l)!]}~/2 

• n222t+21 !(rip~ mZ)t[(np/mZ) 2 + 1] -(t+2) 

l + l  2 x C,_,_l([(np/mZ) - 1]/[(np/mZ) 2 + 1]), (8b) 

where C%(x) denotes the Gegenbauer polynomial (see e.g. [14]). Note that I ' j  
is independent of the quantum number m~. Eq. (5b) therefore becomes 

E(/z) <_/~(~; m) 

= E'(mo) + (-p2/2m'a)I ' l(p ; m') din' 
mo 

+ [(p2/2/~) - (p2/2m)]I'~(p ; m) l  dp, (9a) 
J 
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where E'(mo) equals to -moZ2/ (2n2) .  The integrals appearing on the right-hand- 
side of Eq. (9a) are essentially the kinetic energy integrals which are immediately 
obtained from the virial theorem. The result is 

E(t* ; m)  = - ( i z Z 2 /  Z n 2 ) [ 2 ( m /  t z )  - (m//z) 2] 
= ( txZ2/2n2)[(m/ tz)  - 1] 2 - (tzZ2/2n2).  (9b) 

Namely, /~(/z: m) depends parabolically on the variational parameter m and it 
takes a minimum value - ( t z Z 2 / 2 n  2) at m =/z. This is the correct result, as expected. 
Similar argument holds for the nuclear isotope effect. 

3.2. Relativistic correction 

When the approximate relativistic correction which accounts for the change of 
the electron mass with velocity is included, the kinetic energy operator is expressed 
as [15, 16] 

t (p;  m) = (p2 /2m)  - (p4/8m3 c:), (10) 

where c is the velocity of light. Taking again the hydrogen-like atom as an 
example, we variationally obtain approximate energy and momentum density of 
the relativistic system (a system), which has the kinetic energy operator of Eq. 
(10), by using the non-relativistic result (/3 system) as a reference. For simplicity 
we write the electron mass in the/3 system as/3. From Eqs. (5b) and (8), E results 
in 

~(m ;/3) = -(mz2/2n2){2(/3 / m ) -  ([3/m) ~ 

+(Z/Zcn)2[(Sn - 6 1  - 3)/(2/+ 1)](/3/re)n}, (11) 

where 

fo~PZI ' l (p ; /3 )  dp = (/3Z)2/n 2, (lZa) 

o~p4I',~(p; fl) dp = [(flZ)4/n4][(8n - 61 - 3)/(21 + 1)], (12b) 

have been used (see Refs. [14, 17] for the integrals involving the Gegenbauer 
polynomials). From the condition of OE(m ; fl)/O~ = 0, the value of the parameter 
/3 which minimizes /~(m;/3) of Eq. (11) is approximately, 

/3mi, = {1 +2(Z/2cn)Z[(8n - 61 - 3)/(21 + 1)]}m. (13a) 

Eq. (13a) is correct to terms varying as c -z. Then, the corresponding relativistic 
energy becomes 

/~min = E(rn;/3min)-- - (mZ2/2n2){1  +(Z/Zcn)2[(Sn - 61 - 3)/(2/+ 1)]}. (13b) 

Recalling the fact that m (or /3) plays a role of the orbital exponents in the 
momentum density [1], we see in Eq. (13) that the relativistic correction of Eq. 
(10) contracts the momentum density and lowers the energy. It is also clear that 
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the  d e g r e e  o f  c o n t r a c t i o n  a n d  l o w e r i n g  b e c o m e s  l a rger  w i th  i n c r e a s i n g  Z a n d  

d e c r e a s i n g  n. F o r  g iven  Z a n d  n, the  effect  is sma l l e r  fo r  l a rge r  l ( < - n  - 1). 
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